博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
带阻尼的磁流体方程组的整体适定性
阅读量:5299 次
发布时间:2019-06-14

本文共 849 字,大约阅读时间需要 2 分钟。

在 [Zujin Zhang, Chupeng Wu, Zheng-an Yao, , Applied Mathematics and Computation, 333 (2018), 1—7] 中, 我们考虑带阻尼的磁流体方程组 $$\bee\label{MHD_damping} \sedd{\ba{ll} \p_t\bbu+(\bbu\cdot\n)\bbu -(\bbb\cdot\n)\bbb -\lap\bbu +|\bbu|^{\al-1}\bbu +\n\pi=\bf{0},\\ \p_t\bbb+(\bbu\cdot\n)\bbb -(\bbb\cdot\n)\bbu -\lap\bbb +|\bbb|^{\beta-1}\bbb =\bf{0},\\ \n\cdot\bbu=\n\cdot\bbb=0,\\ \bbu|_{t=0}=\bbu_0,\quad \bbb|_{t=0}=\bbb_0, \ea} \eee$$ 并证明了如果 $$\bee\label{thm:1} 3\leq \al\leq \f{27}{8},\quad \be\geq 4; \eee$$ $$\bee\label{thm:2} \f{27}{8}<\al\leq\f{7}{2},\quad \be\geq \f{7}{2\al-5}; \eee$$ $$\bee\label{thm:3} \f{7}{2}<\al<4,\quad \be\geq \f{5\al+7}{2\al}; \eee$$ $$\bee\label{thm:4} \al\geq 4,\quad \be\geq 1. \eee$$ 那么 \eqref{MHD_damping} 有一个唯一的整体强解. 主要想法有两个: 一是阻尼越强, 整体适定性应该更好做; 二是速度场如果足够好, 那么磁场可不要阻尼. 

转载于:https://www.cnblogs.com/zhangzujin/p/8743480.html

你可能感兴趣的文章
右侧导航栏(动态添加数据到list)
查看>>
81、iOS本地推送与远程推送详解
查看>>
虚拟DOM
查看>>
uva 11468 Substring
查看>>
自建数据源(RSO2)、及数据源增强
查看>>
BootStrap2学习日记2--将固定布局换成响应式布局
查看>>
关于View控件中的Context选择
查看>>
2018icpc徐州OnlineA Hard to prepare
查看>>
Spark的启动进程详解
查看>>
使用命令创建数据库和表
查看>>
数据库的高级查询
查看>>
机器视觉:SSD Single Shot MultiBox Detector
查看>>
201521123044 《Java程序设计》第1周学习总结
查看>>
MIT Scheme 的基本使用
查看>>
程序员的“机械同感”
查看>>
在16aspx.com上下了一个简单商品房销售系统源码,怎么修改它的默认登录名和密码...
查看>>
c++回调函数
查看>>
linux下Rtree的安装
查看>>
【Java】 剑指offer(53-2) 0到n-1中缺失的数字
查看>>
Delphi中ListView类的用法
查看>>